Rust (fungus)

From Wikipedia, the free encyclopedia
  (Redirected from Rust fungus)
Jump to navigation Jump to search

Rusts
Bruine roest op tarwe (Puccinia recondita f.sp. tritici on Triticum aestivum).jpg
Puccinia recondita f.sp. tritici on wheat leaf
Scientific classification edit
Kingdom: Fungi
Division: Basidiomycota
Class: Pucciniomycetes
Order: Pucciniales
Families

Rusts are plant diseases caused by pathogenic fungi of the order Pucciniales (previously also known as Uredinales).

An estimated 168 rust genera and approximately 7,000 species, more than half of which belong to the genus Puccinia, are currently accepted.[1] Rust fungi are highly specialized plant pathogens with several unique features. Taken as a group, rust fungi are diverse and affect many kinds of plants. However, each species has a very narrow range of hosts and cannot be transmitted to non-host plants. In addition, most rust fungi cannot be grown easily in pure culture.

A single species of rust fungi may be able to infect two different plant hosts in different stages of its life cycle, and may produce up to five morphologically and cytologically distinct spore-producing structures viz., spermogonia, aecia, uredinia, telia, and basidia in successive stages of reproduction.[2] Each spore type is very host specific, and can typically infect only one kind of plant.

Rust fungi are obligate plant pathogens that only infect living plants. Infections begin when a spore lands on the plant surface, germinates, and invades its host. Infection is limited to plant parts such as leaves, petioles, tender shoots, stem, fruits, etc.[1] Plants with severe rust infection may appear stunted, chlorotic (yellowed), or may display signs of infection such as rust fruiting bodies. Rust fungi grow intracellularly, and make spore-producing fruiting bodies within or, more often, on the surfaces of affected plant parts.[1] Some rust species form perennial systemic infections that may cause plant deformities such as growth retardation, witch's broom, stem canker, galls, or hypertrophy of affected plant parts.

Rusts get their name because they are most commonly observed as deposits of powdery rust-coloured or brown spores on plant surfaces. The Roman agricultural festival Robigalia (April 25) has ancient origins in combating wheat rust.[3]

Impacts[edit]

Rusts are considered among the most harmful pathogens to agriculture, horticulture and forestry. Rust fungi are major concerns and limiting factors for successful cultivation of agricultural and forestry crops. White pine blister rust, wheat stem rust, soybean and coffee rust are examples of notoriously damaging, economically important rusts.[1]

Life cycle[edit]

All rusts are obligate parasites, meaning that they require a living host to complete their life cycle. They generally do not kill the host plant but can severely reduce growth and yield.[4] Cereal crops can be devastated in one season and trees that get infected in the main stem within their first five years by the rust Cronartium quercuum often die.[5]

Germinating spore of Puccinia graminis, model from the late 19th century, Botanical Museum Greifswald

Rusts can produce up to five spore types from corresponding fruiting body types during their life cycle, depending on the species. Roman numerals have traditionally been used to refer to these morphological types.

  • 0-Pycniospores (Spermatia) from Pycnidia. These serve mainly as haploid gametes in heterothallic rusts.
  • I-Aeciospores from Aecia. These serve mainly as non-repeating, dikaryotic, asexual spores, and go on to infect the primary host.
  • II-Urediniospores from Uredia (Uredinia). These serve as repeating dikaryotic vegetative spores. These spores are referred to as the repeating stage because they can cause auto-infection on the primary host, re-infecting the same host from which the spores were produced. They are often profuse, red/orange, and a prominent sign of rust disease.
  • III-Teliospores from Telia. These dikaryotic spores are often the survival/overwintering stage of life cycle. Later they germinate to produce basidia.
  • IV-Basidiospores from Teliospores. These haploid spores often infect the alternate host in Spring.[6][7] although these are rarely observed outside of the laboratory.

Rust fungi are often categorized by their life cycle. Three basic types of life cycles are recognized based on the number of spore states as macrocyclic, demicyclic, and microcyclic.[1] The macrocyclic life cycle has all spore states, the demicyclic lacks the uredinial state, and the microcyclic cycle lacks the basidial, pycnial, and the aecial states, thus possess only uredinia and telia. Spermagonia may be absent from each type but especially the microcyclic life cycle. In macrocyclic and demicyclic life cycles, the rust may be either host alternating (heteroecious), i.e., the aecial state is on one kind of plant but the telial state on a different and unrelated plant, or non-host alternating (autoecious), i.e., the aecial and telial states on the same kind of plant.[1] Heteroecious rust fungi require two unrelated hosts to complete their life cycle, with the primary host being infected by aeciospores and the alternate host being infected with basidiospores. This can be contrasted with an autoecious fungus which can complete its life cycle on a single host species.[6] Understanding the life cycles of rust fungi allows for proper disease management.[8]

Host plant-rust fungus relationship[edit]

There are definite patterns of relationship with host plant groups and the rust fungi that parasitize them. Some genera of rust fungi, especially Puccinia and Uromyces, comprise species that are capable of parasitizing plants of many families. Other rust genera appear to be restricted to certain plant groups. Host restriction may, in heteroecious species, apply to both phases of life cycle or to only one phase.[1]

Infection process[edit]

The fungi produce asexual spores which disperse by wind, water or by insect vectors[9] spreading the infection.

Rust fungi are biotrophs, taking nutrients from living cells. When airborne spores settle on a plant, weak hydrophobic interactions are formed with the cutin on the plant cell surface, securing it. By a process not fully understood, the production of mucous like substances called 'adhesins', initially stick the spore to the plant surface.[10]

Once attached, the spore germinates by growing a germ tube and eventually locates a stoma by a touch responsive process known as thigmotropism. This involves growing towards a ridge between the epidermal cells, followed by a perpendicular growth which end at the stoma.[11]

Rust hypha attacking stoma (1600x magnification)

Inside the stoma, the hyphae tips flatten out to form structures known as appressoria that lock to the cell walls.[12] It is thought that the whole process is mediated by a mechano-sensitive calcium ion channel, located within the germ tube tip, which produces electric currents that stretch the cell membranes, changing gene expression and forming the appresorium.[13]

Then a peg grows into the plant's mesophyll cells. The peg produces specialised hyphal tips, known as haustoria. These spread around the plant cells without invading the membranes. The plant cell membranes invaginate around the main haustorial body forming a space known as the extra-haustorial matrix. An iron and phosphorus rich neck band bridges the plant and fungal membranes in the space between the cells for water flow, known as the apoplast, thus preventing the nutrients reaching the plant's cells. The haustorium contains amino acid and hexose sugar transporters and H+-ATPases which are used for active transport of nutrients from the plant nourishing the fungus.[14] It continues growing until spore growth occurs. The process repeats every 10 – 14 days, producing numerous spores, carried by wind to new hosts.

Common rust fungi in agriculture[edit]

[6][8][15]

Management of rust fungi diseases[edit]

The control methods of rust fungus diseases depend largely on the life cycle of the particular pathogen. The following are examples of disease management plans used to control macrocyclic and demicyclic diseases:

Macrocyclic Disease: Developing a management plan for this type of disease depends largely on whether the repeating stage (urediniospores) occur on the economically important host plant or the alternate host. For example, the repeating stage in white pine blister rust disease does not occur on white pines but on the alternate host, Ribes spp. During August and September Ribes spp. give rise to teliospores which infect white pines. Removal of the alternate host disrupts the life cycle of the rust fungi Cronartium ribicola, preventing the formation of basidiospores which infect the primary host. Although spores from white pines cannot infect other white pines, survival spores may overwinter on infected pines and reinfect Ribes spp. the following season. Infected tissue is removed from white pines and strict quarantines of Ribes spp. are maintained in high risk areas.[6][17]

Puccinia graminis is a macrocyclic heteroecious fungus that causes wheat stem rust disease. The repeating stage in this fungus occurs on wheat and not the alternate host, barberry. The repeating stage allows the disease to persist in wheat even though the alternate host may be removed. Planting resistant crops is the ideal form of disease prevention, however, mutations can give rise to new strains of fungi that can overcome plant resistance. Although the disease cannot be stopped by removal of the alternate host, the life cycle is disrupted and the rate of mutation is decreased because of reduced genetic recombination. This allows resistance bred crops to remain effective for a longer period of time.[6][18]

Demicyclic Disease: Because there is no repeating stage in the life cycle of demicyclic fungi, removal of the primary or the alternate host will disrupt the disease cycle. This method, however, is not highly effective in managing all demicyclic diseases. Cedar-apple rust disease, for example, can persist despite removal of one of the hosts since spores can be disseminated from long distances. The severity of Cedar-apple rust disease can be managed by removal of basidiospore producing galls from junipers or the application of protective fungicides to junipers.[19]

Home control[edit]

Rust is very hard to treat. Fungicides such as Mancozeb or Triforine may help but may never eradicate the disease. Some organic preventative solutions are available and sulphur powder is known to stop germination. High standards of hygiene and good soil drainage and careful watering may minimise problems. Any appearance of rust must be immediately dealt with by removing and burning all affected leaves. Composting, or leaving infected vegetation on the ground will spread the disease.

Commercial control[edit]

In large plantations in USA, fungicides are applied by air. The process is expensive and fungicide application is best reserved for seasons when foliar diseases are severe. Research indicates, the higher the foliar disease severity, the greater the return from the use of fungicides.[20] There are a variety of preventative methods that can also be employed.

  • Symptoms of rust disease are correlated to relatively high moisture. The avoidance of overhead watering at night, using drip irrigation, reducing crop density, and using fans to circulate air flow will lower the relative moisture and decrease the severity of rust infection.
  • The use of rust resistant plants
  • Crop rotation can break the disease cycle because many rusts are host specific.
  • Inspect all imported plants and cuttings for symptoms. It is important to continuously observe these plants because rust diseases have a latent period (plant has the disease but shows no symptoms).
  • Many crops, such as wheat, are replanted with disease-free seed.[4][18]

Host plants affected[edit]

Rusts are often named after the host species that they infect. For example; Puccinia xanthii infects the flowering plant cocklebur (Xanthium). It is probable that most plant species are affected by some species of rust. Recently, a total of 95 rust fungi belonging to 25 genera associated with 117 forest plant species belonging to 80 host genera under 43 host families were reported from the Western Ghats, Kerala, India.[1] Rust fungi include:

Rust infected host genera include:[1]

Some of the better known hosts include:

Rust on onions

Hyperparasites of rusts[edit]

In the family Sphaeropsidaceae of Sphaeropsidales fungi, species of the genus Darluca are hyperparasites on rusts.[21]

See also[edit]

Gallery[edit]

References[edit]

[1]

  1. ^ a b c d e f g h i j Mohanan C. (2010). Rust Fungi of Kerala. Kerala, India: Kerala Forest Research Institute. p. 148. ISBN 81-85041-72-5.
  2. ^ Kolmer, James A; Ordonez, Maria E; Groth, James V (2001). eLS. John Wiley & Sons, Ltd. doi:10.1002/9780470015902.a0021264. ISBN 9780470015902.
  3. ^ Evans, R. (2007). Utopia Antiqua: Readings of the Golden Age and Decline at Rome. Taylor & Francis. ISBN 978-1-134-48787-5. Retrieved 2018-01-12.
  4. ^ a b Central Science Laboratory. (2006). Plant Healthcare: Rusts [Fact Sheet]. Retrieved from www.csldiagnostics.co.uk
  5. ^ "Rust Fungi". www.backyardnature.net.
  6. ^ a b c d e Schumann, G. & D'Arcy, C. (2010). Essential plant pathology. APS Press
  7. ^ Scott, K.J, & Chakravorty, A.K., (1982), The Rust fungi. Academic Press.
  8. ^ a b Peterson, R., (1974). The Rust Fungus Life Cycle. The Botanical Review. 40(4), 453-513.
  9. ^ Craigie, J.H. (1931). Phytopathology, 21,1001
  10. ^ Osherov, N. and G.S. May, The molecular mechanisms of conidial germination. FEMS Microbiol. Lett, 2001. 199(2): p. 153–160.
  11. ^ Dickinson, M. Molecular Plant Pathology. 2003.
  12. ^ Deising, H.B., S. Werner, and M. Wernitz, The role of fungal appressoria in plant infection. Microbes Infect, 2000. 2(13): p. 1631-41.
  13. ^ Zhou, X.L., et al., A mechanosensitive channel in whole cells and in membrane patches of the fungus Uromyces. Science, 1991. 253(5026): p. 1415.
  14. ^ Voegele, R.T. and K. Mendgen, Rust haustoria: nutrient uptake and beyond. New Phytologist, 2003. 159(1): p. 93-100.
  15. ^ Cornell University. (2010). Daylily rust: Puccinia hemerocallidis [Fact sheet]. Retrieved from http://plantclinic.cornell.edu
  16. ^ Hooker, Arthur L (1967). "The Genetics and Expression of Resistance in Plants to Rusts of the Genus Puccinia". Annu. Rev. Phytopathol. 5 (1): 163–178. doi:10.1146/annurev.py.05.090167.001115.
  17. ^ Cornell University. (2005). White Pine Blister Rust: Cronartium ribicola [Fact sheet]. Retrieved from http://plantclinic.cornell.edu
  18. ^ a b Marsalis, M. & Goldberg, N. (2006). Leaf, Stem, And Stripe Rust Diseases of Wheat. [Fact sheet]. New Mexico State University
  19. ^ Wallis, C. & Lewandowski, D. (2008). Cedar Rust Diseases of Ornamental Plants. [Fact Sheet]. Ohio State University
  20. ^ "Stopsoybeanrust.com". www.stopsoybeanrust.com.
  21. ^ faculty.ucr.edu (retrieved December 2015)